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What can LLMs do?

@ Answer your questions, composing emails, write essays and code...
@ "Reason” and pass exams
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Figure: Various applications based on LLMs and VLPs
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Pre-training and Fine-tuning

o Large Language Models or Vision-Language Pre-training Models:
once trained, can be used in different tasks (zero-shot reasoning)

@ IF NOT? Our previous works focus on parameter-efficient fine-tuning
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Figure: Unsupervised Dual Constraint Contrastive
Cross-modal Retrieval
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Attention in Psychology

(a) Look at an object without clue (b) Look at an object with clue

Figure: Attention comes from the concept in Psychology
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Motivation

Attention in Machine Translation
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Figure: Seq2seq with attention in machine translation @, ...
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Motivation

Probing LLMs from Cognitive Prospective

Figure: Gazing at the bridge in the distance through a pair of eyeglasses
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Leveraging human behavioral data to probe LLMs

e To what extent can we use LLMs to predict human behavior
data?

@ To what extent can we use human behavior data to understand
LLMs, including prediction and inside states?

e Data: Eye-tracking and brain-EEG/MEG data
@ LLM: N-Gram LM (w/o KN), RNN, GRU, LSTM, RWKV, GPT-2
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Language Models: Statistical LM

N-Gram language model and N-Gram LM with Kneser—-Ney smoothing

;
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Problem: slow and sparsity - smoothing
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Language Models: RNN-based LMs and Gates

RNN and RNNLM
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Figure: RNN and RNN LM models
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Language Models: RNN-based LMs and Gates

GRU: Update Gate (important), Reset Gate (forget)

H; = tanh (X ;W + (R: ® H_1) Wy, + by) (3)
Ht:ZtQHt—1+(1_Zt)®Ht (4)
Hidden state ( @ () D H

-1

Candidate
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Input X,
FC layer with Elementwise Co Concatenate
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Figure: GRU model (R=1 and Z=0 := RNN)
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Language Models: RNN-based LMs and Gates

LSTM: Forget Gate (— 0), Input Gate (if ignore x), Output Gate (if use
hidden state)

Ct:FtQthl‘Flt@Ct (5)
H. = 0, ®tanh (Cy) (6)
Memory cell
internal state
C..
Fgo;f:i Inpul :0%2 Ogu;?:t
Hidden state
H,
Input X,

FC layer with Elementwise —
EI activation function operator ) . oy Concatenate

Figure: LSTM model (memory and assistant memory units)
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Language Models: RNN-based LMs and Gates

RWKV
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Figure: RWKV model
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Large Language Models: Self-attention based LMs

GPT-2

Transformer Block Ouptut
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Figure: GPT Architecture
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Large Language Models: Self-attention based LMs

Attention
e Convolutional, FC, Pooling (w/o Clue), Attention (Query — Clue)
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Large Language Models: Self-attention based LMs

Self-attention and multi-head: Q = K =V = x
yi = f(xi,(X1,X1) 5., (Xn, X)) € RY (11)
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Figure: Transformer (valid length = i)
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Datasets: English Natural Reading and Task-specific

Reading

Dataset Published Year Available Eye-tracking EEG Sentences Participants
Zuco 1.0 [Hollenstein et al., 2018] 2018 v v v 1107 12
Zuco 2.0 [Hollenstein et al., 2019] 2019 v v v 739 18
GECO [Cop et al., 2017] 2017 v v X 5031 14
Provo [Luke and Christianson, 2018] 2018 v X X 138 84

Table: Human behavioral data in English Reading
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Eye-Movement Measures

Eye-Movement Measures Abbreviations Definition

First fixation duration FFD Duration of the first fixation on the target word

Gaze duration GD Sum of the fixation durations before the target word
is exited to the right or left during first-pass reading

First-pass reading fixated proportion FPF Proportion that the target word is fixated during
the first-pass reading

Fixation number FN Total number of fixations on the target word

Proportion regression in RI Proportion of regression into the target word

Proportion regression out RO Proportion of regression out from the target word

Saccade length toward the target from the left LI left Length of saccade into the target word when the
word is first fixated from the left side (unit: char-
acter)

Saccade length from the target to the right LO_right Length of the saccade from target word to the right
after the word first fixated (unit: character)

Total fixation duration TT Sum of the fixation durations on the target word

Table: Eye-movement measures
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EEG Measures

Brain activity Measures Abbreviations Definition
Electroencephalographic EEG -
Magnetoencephalographic MEG -

Table: Brain-activity measures
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Zuco 2.0 Dataset

Eye-Movement Measures Abbreviations Definition

Gaze duration GD the sum of all fixations on the current word in the
first-pass reading before the eye moves out of the
word

Total reading time TRT the sum of all fixation durations on the current
word, including regressions

First fixation duration FFD the duration of the first fixation on the prevailing
word

Single fixation duration SFD the duration of the first and only fixation on the
current word

Go-past time GPT the sum of all fixations prior to progressing to the

right of the current word, including regressions to
previous words that originated from the current
word

Table: Eye-movement measures
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Experiment: Use LLMs to predict HBD

@ Preprocess eye-tracking raw data

Feature min max mean (std)
NFIX 0.0 1000 151 (9.5)
FFD 0.0 12.2 3.2 (1.4)
GPT 0.0 100.0 6.4 (5.9)
TRT 00 411 5.3 (3.7)

FIXPROP 00  100.0  67.1(26.0)

Table: Min, max, mean and standard deviation of the scaled feature values
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Experiment: Use LLMs to predict HBD

To what extent can we use LLMs to predict human behavior data?
@ RoBERTa Fine-Tuning for Eye-Tracking Prediction

nFix FFD GPT TRT fixProp

ROBERTa

Figure: Fine-tune RoBERTa model for eye-tracking prediction
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Experiment: Use LLMs to predict HBD

To what extent can we use LLMs to predict human behavior data?

@ Three different models to predict eye-movement measures

Method MAE NFIX FFD GPT TRT FIXPROP
LightGBM + Feature 3.813 3.879 0.655 2.197 1.524 10.812
MLP + Feature 3.833 3.761 0.662 2.180 1.486 11.076
RoBERTRa 3.929 3.944 0.671 2.227 1.516 11.286

Table: Overall MAE results of different methods to predict eye-movement
measures
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: Use LLMs to predict HBD

o Feature usefulness ablation study

Models MAE %MAE %nFix %FFD %GPT %TRT %fixProp
W/o behavioral data 3.849 -0.93 -0.69 -1.30 -0.75 -0.78 -1.05
W/o ELP charact. 3.859 -1.19 -0.54 -1.36 -0.95 -0.59 -1.55
W/o frequencies 3.880 -1.74 -1.38 -1.68 -1.88 -1.55 -1.87
W/o bigram AM 3.881 -1.78 -2.05 -2.32 -1.39 -1.94 -1.70
W/o length feat. 3.979 -4.35 -5.95 -2.92 -3.17 -4.43 -4.08
W/o position feat. 4.095 -7.39 -7.68 -4.44 -22.88 -7.48 -4.30
RMSE optimization 3.847 -0.87 -0.43 0.46 -4.73 -0.09 -0.43
Default Param + MAE 3.902 -2.32 -2.34 -1.54 -3.52 -2.12 -2.15
Default Param + RMSE 4.141 -8.59 -7.67 --7.65 -12.62 -7.43 -8.31
Linear Regression 4.268 -10.64 -9.04 -7.88 -24.09 -9.47 -8.26
LGBM on Length + Position 4.219 -10.63 -10.70 -11.40 -8.18 -12.1 -10.85

Table: Feature usefulness study
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Experiment: Use HBD to understand LLMs

Prediction Probability Correlated with Eye-tracking Features
@ NGram4G, RNNLM, GRULM, LSTMLM, RWKYV, GPT-2

Prediction Probability Correlated with Eye-tracking Features

Mo WOTRT MWD M SO M GT

Figure: Prediction Probability Correlated Results - P(w) ...
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Experiment: Use HBD to understand LLMs

@ N-Gram Models correlated well —

with human behavioral data I| I I| .
-] | ‘ ‘ I||| ilg

@ RNN and its variant have similar
patter explaining human
behavioral data

o GPT-2 has different explanation
bias compared with other
models

NNNNNNNN R

o RWKV maintain temporal

information and perform similar Figure: Prediction Probability Correlated
with RNN family Results - P(w)
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Experiment: Use HBD to understand LLMs

Prediction Probability Correlated with Eye-tracking Features
@ NGram4G, RNNLM, GRULM, LSTMLM, RWKYV, GPT-2

Prediction Probability Correlated with Eye-tracking Features

Figure: Prediction Probability Correlated Results - log(P(x)) ...
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Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in RNN Correlated with
Eye-tracking Features
@ Embedding, Hidden states, Prediction Probability

RNN and States \g Features
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Ll Universitit Hamburg

Figure: RNN States Correlated Results
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Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in RNN Correlated with
Eye-tracking Features
@ Embedding, Hidden states, Prediction Probability
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Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in GRU Correlated with
Eye-tracking Features
@ Embedding, Hidden states, Reset Gate, Update Gate, Candidate
Gate, Prediction Probability

with Features
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Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in LSTM Correlated with
Eye-tracking Features

@ Embedding, Hidden states, Input Gate, Cell state, Forget Gate,
Candidate Gate, Prediction Probability

IIII —r e II —— IIII IIII IIII IIII IIII

Figure: LSTM States Correlated Results
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Experiment: Use HBD to understand LLMs

Hidden States through Layers in GPT-2 Correlated with
Eye-tracking Features

GPT-2 States Correlated with Eye-tracking Features
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Figure: GPT-2 Hidden States Correlated Results A,
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Correlated with Attention Heads Through Layers (GD)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Correlated with Attention Heads Through Layers (TRT)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Correlated with Attention Heads Through Layers (FFD)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Correlated with Attention Heads Through Layers (SFD)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Correlated with Attention Heads Through Layers (GPT)
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Experiment: Use HBD to understand LLMs

Syntactic Analysis and Many More
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Chain-of-Thought

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The answer is 27. x

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?
N J

. Model Output
A

: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

Kanswer is9. o /

Figure: Example of CoT
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Chain-of-Thought

FFD

TRT

nFix

Normal reading

Task-specific reading

Henry Ford, with his son Edsel, founded the Ford Foundation in 1936 s a local philanthropic
organization with a broad charter to promote human welfare,

Bush co-founded the first charter school in the State of Florida: Libéfty/City Charter School, a grades
K-6 elementary school.

Henry Ford, with his son Edsel, founded the Ford Foundation in 1936 s a local philanthropic
organization with a broad charter to promote human welfare.

Bush co-founded the first charter school in the State of Florida: Liberty City Charter School, a grades
K-6 elementary school.

Henry Ford, with his son Edsel, founded the Ford Foundation in 1936 as a local philanthropic
organization with a broad charter to promote human W

Bush [SSSHRGEHhe first charter school in the State of Florida: Liberty City Charter School, a grades
K-6 elementary school.

Henry Ford, With his son Edsel, founded the Ford Foundation in 1936 as a local philanthropic
organization with a broad charter to promote human welfare.

Bush e first charter school in the State of Florida: Liberty City Charter School, a grades
K-6 elementary school

Henry Ford, with his son Edsel, founded the Ford Foundation in 1936 as a local philanthropic
organization with a broad charter to promote human welfare.

Bush go-founded the first charter school in the State of Florida Liberty City Charter School, a grades
K-6 elementary school.

Henry Ford, with his son Edsel, founded the Ford Foundation in 1936 as a local philanthropic
organization with a broad charter to promote human welfare

Bush go-founded the first charter school in the State of Florida: Liberty City Charter School, a grades
K-6 elementary school

Figure: Heat on words
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Chain-of-Thought Prompt

@ More human-like, prompting more-likely words
o Efficient training
@ Eliminate poisoning content

Multilingual Training ...
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Thank You!

Any Questions?

xintong.wang@uni-hamburg.de
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