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What can LLMs do?

Answer your questions, composing emails, write essays and code...

”Reason” and pass exams

Figure: Various applications based on LLMs and VLPs
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Pre-training and Fine-tuning

Large Language Models or Vision-Language Pre-training Models:
once trained, can be used in different tasks (zero-shot reasoning)

IF NOT? Our previous works focus on parameter-efficient fine-tuning

Figure: Unsupervised Dual Constraint Contrastive
Cross-modal Retrieval
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Motivation

Attention in Psychology

(a) Look at an object without clue (b) Look at an object with clue

Figure: Attention comes from the concept in Psychology
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Motivation

Attention in Machine Translation

Figure: Seq2seq with attention in machine translation
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Motivation

Probing LLMs from Cognitive Prospective

Figure: Gazing at the bridge in the distance through a pair of eyeglasses
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Motivation

Leveraging human behavioral data to probe LLMs

To what extent can we use LLMs to predict human behavior
data?

To what extent can we use human behavior data to understand
LLMs, including prediction and inside states?

Data: Eye-tracking and brain-EEG/MEG data

LLM: N-Gram LM (w/o KN), RNN, GRU, LSTM, RWKV, GPT-2
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Language Models: Statistical LM

N-Gram language model and N-Gram LM with Kneser–Ney smoothing

P (x1, x2, . . . , xT ) =
T∏
t=1

P (xt | x1, . . . , xt−1) (1)

P(deep,learning,is,fun ) = P(deep)P(learning | deep)P(is | deep, learning)
P(fun | deep, learning, is).

P̂(learning | deep) = n(deep, learning)

n(deep)
(2)

Problem: slow and sparsity - smoothing
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Language Models: RNN-based LMs and Gates

RNN and RNNLM

(a) RNN model (b) RNN LM

Figure: RNN and RNN LM models
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Language Models: RNN-based LMs and Gates

GRU: Update Gate (important), Reset Gate (forget)

H̃ t = tanh (X tW xh + (Rt ⊙ H t−1)W hh + bh) (3)

H t = Z t ⊙ H t−1 + (1− Z t)⊙ H̃ t (4)

Figure: GRU model (R=1 and Z=0 := RNN)
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Language Models: RNN-based LMs and Gates

LSTM: Forget Gate (→ 0), Input Gate (if ignore x), Output Gate (if use
hidden state)

C t = F t ⊙ C t−1 + I t ⊙ C̃ t (5)

H t = Ot ⊙ tanh (C t) (6)

Figure: LSTM model (memory and assistant memory units)
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Language Models: RNN-based LMs and Gates

RWKV

Figure: RWKV model
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Large Language Models: Self-attention based LMs

GPT-2

Figure: GPT Architecture
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Large Language Models: Self-attention based LMs

Attention

Convolutional, FC, Pooling (w/o Clue), Attention (Query → Clue)

f (x) =
n∑

i=1

K (x − xi )∑n
j=1 K (x − xj)

yi (7)

f (x) =
∑
i

α (x , xi ) yi =
n∑

i=1

softmax

(
−1

2
(x − xi )

2

)
yi (8)

f (q, (k1, v1) , . . . , (km, vm)) =
m∑
i=1

α (q, ki ) vi ∈ Rv (9)

α (q, ki ) = softmax (a (q, ki )) =
exp (a (q, ki ))∑m
j=1 exp (a (q, kj))

∈ R (10)
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Large Language Models: Self-attention based LMs

Self-attention and multi-head: Q = K = V = x

yi = f (xi , (x1, x1) , . . . , (xn, xn)) ∈ Rd (11)

Figure: Transformer (valid length = i)
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Datasets: English Natural Reading and Task-specific
Reading

Dataset Published Year Available Eye-tracking EEG Sentences Participants

Zuco 1.0 [Hollenstein et al., 2018] 2018 ✓ ✓ ✓ 1107 12
Zuco 2.0 [Hollenstein et al., 2019] 2019 ✓ ✓ ✓ 739 18

GECO [Cop et al., 2017] 2017 ✓ ✓ ✗ 5031 14
Provo [Luke and Christianson, 2018] 2018 ✓ ✗ ✗ 138 84

Table: Human behavioral data in English Reading
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Eye-Movement Measures

Eye-Movement Measures Abbreviations Definition

First fixation duration FFD Duration of the first fixation on the target word
Gaze duration GD Sum of the fixation durations before the target word

is exited to the right or left during first-pass reading
First-pass reading fixated proportion FPF Proportion that the target word is fixated during

the first-pass reading
Fixation number FN Total number of fixations on the target word
Proportion regression in RI Proportion of regression into the target word
Proportion regression out RO Proportion of regression out from the target word
Saccade length toward the target from the left LI left Length of saccade into the target word when the

word is first fixated from the left side (unit: char-
acter)

Saccade length from the target to the right LO right Length of the saccade from target word to the right
after the word first fixated (unit: character)

Total fixation duration TT Sum of the fixation durations on the target word

Table: Eye-movement measures
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EEG Measures

Brain activity Measures Abbreviations Definition

Electroencephalographic EEG -
Magnetoencephalographic MEG -

Table: Brain-activity measures
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Zuco 2.0 Dataset

Eye-Movement Measures Abbreviations Definition

Gaze duration GD the sum of all fixations on the current word in the
first-pass reading before the eye moves out of the
word

Total reading time TRT the sum of all fixation durations on the current
word, including regressions

First fixation duration FFD the duration of the first fixation on the prevailing
word

Single fixation duration SFD the duration of the first and only fixation on the
current word

Go-past time GPT the sum of all fixations prior to progressing to the
right of the current word, including regressions to
previous words that originated from the current
word

Table: Eye-movement measures
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Experiment: Use LLMs to predict HBD

Preprocess eye-tracking raw data

Feature min max mean (std)

NFIX 0.0 100.0 15.1 (9.5)
FFD 0.0 12.2 3.2 (1.4)
GPT 0.0 100.0 6.4 (5.9)
TRT 0.0 41.1 5.3 (3.7)
FIXPROP 0.0 100.0 67.1 (26.0)

Table: Min, max, mean and standard deviation of the scaled feature values
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Experiment: Use LLMs to predict HBD

To what extent can we use LLMs to predict human behavior data?

RoBERTa Fine-Tuning for Eye-Tracking Prediction

Figure: Fine-tune RoBERTa model for eye-tracking prediction
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Experiment: Use LLMs to predict HBD

To what extent can we use LLMs to predict human behavior data?

Three different models to predict eye-movement measures

Method MAE NFIX FFD GPT TRT FIXPROP

LightGBM + Feature 3.813 3.879 0.655 2.197 1.524 10.812
MLP + Feature 3.833 3.761 0.662 2.180 1.486 11.076
RoBERTRa 3.929 3.944 0.671 2.227 1.516 11.286

Table: Overall MAE results of different methods to predict eye-movement
measures
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Experiment: Use LLMs to predict HBD

Feature usefulness ablation study

Models MAE %MAE %nFix %FFD %GPT %TRT %fixProp

W/o behavioral data 3.849 -0.93 -0.69 -1.30 -0.75 -0.78 -1.05
W/o ELP charact. 3.859 -1.19 -0.54 -1.36 -0.95 -0.59 -1.55
W/o frequencies 3.880 -1.74 -1.38 -1.68 -1.88 -1.55 -1.87
W/o bigram AM 3.881 -1.78 -2.05 -2.32 -1.39 -1.94 -1.70
W/o length feat. 3.979 -4.35 -5.95 -2.92 -3.17 -4.43 -4.08
W/o position feat. 4.095 -7.39 -7.68 -4.44 -22.88 -7.48 -4.30

RMSE optimization 3.847 -0.87 -0.43 0.46 -4.73 -0.09 -0.43
Default Param + MAE 3.902 -2.32 -2.34 -1.54 -3.52 -2.12 -2.15
Default Param + RMSE 4.141 -8.59 -7.67 --7.65 -12.62 -7.43 -8.31

Linear Regression 4.268 -10.64 -9.04 -7.88 -24.09 -9.47 -8.26
LGBM on Length + Position 4.219 -10.63 -10.70 -11.40 -8.18 -12.1 -10.85

Table: Feature usefulness study
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Experiment: Use HBD to understand LLMs

Prediction Probability Correlated with Eye-tracking Features

NGram4G, RNNLM, GRULM, LSTMLM, RWKV, GPT-2

Figure: Prediction Probability Correlated Results - P(w)
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Experiment: Use HBD to understand LLMs

N-Gram Models correlated well
with human behavioral data

RNN and its variant have similar
patter explaining human
behavioral data

GPT-2 has different explanation
bias compared with other
models

RWKV maintain temporal
information and perform similar
with RNN family

Figure: Prediction Probability Correlated
Results - P(w)
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Experiment: Use HBD to understand LLMs

Prediction Probability Correlated with Eye-tracking Features

NGram4G, RNNLM, GRULM, LSTMLM, RWKV, GPT-2

Figure: Prediction Probability Correlated Results - log(P(x))
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Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in RNN Correlated with
Eye-tracking Features

Embedding, Hidden states, Prediction Probability

Figure: RNN States Correlated Results
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Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in RNN Correlated with
Eye-tracking Features

Embedding, Hidden states, Prediction Probability

Figure: Con. RNN States Correlated Results
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Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in GRU Correlated with
Eye-tracking Features

Embedding, Hidden states, Reset Gate, Update Gate, Candidate
Gate, Prediction Probability

Figure: GRU States Correlated ResultsXintong Wang (Department of Informatics, University of Hamburg Language Technology Group)Probing Large Language Models (LLMs) for Predicting Human Behavioral DataJune 20, 2023 31 / 44



Experiment: Use HBD to understand LLMs

Prediction Probability and Internal States in LSTM Correlated with
Eye-tracking Features

Embedding, Hidden states, Input Gate, Cell state, Forget Gate,
Candidate Gate, Prediction Probability

Figure: LSTM States Correlated Results
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Experiment: Use HBD to understand LLMs

Hidden States through Layers in GPT-2 Correlated with
Eye-tracking Features

Figure: GPT-2 Hidden States Correlated Results

Xintong Wang (Department of Informatics, University of Hamburg Language Technology Group)Probing Large Language Models (LLMs) for Predicting Human Behavioral DataJune 20, 2023 33 / 44



Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Figure: Attention Heads Correlated Results (GD)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Figure: Attention Heads Correlated Results (TRT)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Figure: Attention Heads Correlated Results (FFD)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Figure: Attention Heads Correlated Results (SFD)
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Experiment: Use HBD to understand LLMs

Attention Heads through Layers in GPT-2 Correlated with
Eye-tracking Features

Figure: Attention Heads Correlated Results (GPT)
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Experiment: Use HBD to understand LLMs

Syntactic Analysis and Many More

...
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Chain-of-Thought

Figure: Example of CoT
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Chain-of-Thought

Figure: Heat on words
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Chain-of-Thought

Chain-of-Thought Prompt

More human-like, prompting more-likely words

Efficient training

Eliminate poisoning content

Multilingual Training ...

Xintong Wang (Department of Informatics, University of Hamburg Language Technology Group)Probing Large Language Models (LLMs) for Predicting Human Behavioral DataJune 20, 2023 42 / 44



Thank You!

Any Questions?

xintong.wang@uni-hamburg.de
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