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Abstract

Large Language Models (LLMs) have emerged
as dominant foundational models in modern
NLP. However, the understanding of their pre-
diction process and internal mechanisms, such
as feed-forward networks and multi-head self-
attention, remains largely unexplored. In this
study, we probe LLMs from a human be-
havioral perspective, correlating values from
LLMs with eye-tracking measures, which are
widely recognized as meaningful indicators of
reading patterns. Our findings reveal that LLMs
exhibit a prediction pattern distinct from that
of RNN-based LMs. Moreover, with the es-
calation of FFN layers, the capacity for mem-
orization and linguistic knowledge encoding
also surges until it peaks, subsequently pivot-
ing to focus on comprehension capacity. The
functions of self-attention are distributed across
multiple heads. Lastly, we scrutinize the gate
mechanisms, finding that they control the flow
of information, with some gates promoting,
while others eliminating information.

1 Introduction

Modern Large Language Models (LLMs) (Devlin
et al., 2018; Radford et al., 2019; Touvron et al.,
2023) have demonstrated remarkable success as
foundational models in generalization. These mod-
els, built upon transformers (Vaswani et al., 2017),
primarily consist of two core components: the
feed-forward network and multi-head self-attention.
How do LLMs construct word prediction and what
are the internal functions of their core components?
We approach this question from the perspective of
human behavior.

Cognition and psycholinguistic studies often
record measures while humans engage in natural
or task-specific reading (Hollenstein et al., 2018,
2019; Cop et al., 2017; Luke and Christianson,
2018). These well-defined measures align closely
with the processes of language models (LM) (Hof-
mann et al., 2022). Our investigation commences

with the examination of word prediction in differ-
ent LMs, from statistical N-Gram LM (Pauls and
Klein, 2011) to RNN-based LMs (Mikolov et al.,
2010), and finally, LLMs like RKVW (Peng et al.,
2023) and GPT-2 (Radford et al., 2019). Notably,
RNN-based LMs exhibit a pattern most akin to hu-
man word prediction. Words that pose difficulty
for humans also challenge these models. Inter-
estingly, LL.Ms like GPT-2 demonstrate a distinct
pattern with a positive correlation to human be-
havioral data. The GPT-2 model boasts powerful
capabilities, with an increase in the probability of
predicting challenging words, compared to other
LMs.

We probe each layer to comprehend the func-
tions of FFN and multi-head self-attention. FFN
layers appear to serve as memory units that encode
linguistic knowledge toward word prediction, with
their ability increasing with the layer count until
peaking around layer 8. Beyond this point, the
FFN emphasizes improving comprehension. On
the other hand, multi-head self-attention is found
to be distributed. These attention heads work to
promote crucial information, their ability also peak-
ing around layer 8, thus reinforcing the function of
FFN.

In addition to probing LL.Ms, we correlate hid-
den states, memory cells and gates with human
behavioral data, enabling an understanding of the
function of memory units and gate mechanisms in
RNN-based models. Our findings indicate that the
hidden memory and memory cells are utilized in
semantic processing and comprehension. The gates
in GRU and LSTM operate to control information,
promoting or eliminating.

In conclusion, we delve into the construction
process of word prediction in LMs, and the mecha-
nisms of gates, FFN, and multi-head self-attention.
Our findings illuminate the internal workflow of
LLMs, contributing to future work on their inter-
pretability, control, and efficient training.



2 Related Work

Human Behavior Measures: Studies in cognition
and psycholinguistics have deployed simultaneous
eye-tracking and electroencephalography during
natural and task-specific reading to comprehend
human reading processes. Noteworthy datasets in
this context include ZuCo 1.0 (Hollenstein et al.,
2018), ZuCo 2.0 (Hollenstein et al., 2019), GECO
(Cop et al., 2017), and Provo (Luke and Christian-
son, 2018). However, to the best of our knowledge,
there is a paucity of work utilizing these datasets
to probe LL.Ms and their internal mechanisms.
Eye-movement Prediction: A shared task at ACL
2021 (Hollenstein et al., 2021) involved using LMs
for predicting eye-movement measures. Several
models, including Boosting, MLP, and RoBERTa,
displayed significant performance in this task. Lin-
guistic features proved crucial for achieving supe-
rior results (Bestgen, 2021). In this paper, we focus
on employing behavioral data for probing LLMs.

3 Language Models and Word Prediction

Modern language models are predominantly
transformer-based models designed to predict the
subsequent token given a context. The primary
components of these LMs comprise Feed-Forward
Networks (FFN) and Multi-Head Self-Attention
mechanisms. In this section, we delineate LMs
from the standpoint of word prediction, while
underscoring key mechanisms such as the gate
and self-attention. We commence with a statis-
tical model, the N-Gram LM (Pauls and Klein,
2011), followed by RNN-based LMs (Mikolov
et al., 2010), and subsequently, the self-attention-
based LM, GPT-2 (Radford et al., 2019).

Given a sequence of input tokens, denoted
as w =< wi,ws,...,w, >, an n-gram repre-
sents a sequence of n words. Upon applying
the Markov assumption, which approximates the
context history for the current predicted token to
n — 1, the conditional probability for the current
token can be expressed as: P (wy, | wip,—1) =~
P (wy, | Wp—N4+1:n—1), Where N signifies the pa-
rameter of the n-gram, and n indexes the pre-
dicted token. To calculate the n-gram proba-
bility, we estimate the parameters of an n-gram
model by counting the co-occurrences, denoted as
C(Wpn—N+1:n—1), within the corpus. The N-Gram
LM, being a statistical LM, is straightforward to
implement. As the value of N increases, the preci-
sion of the N-Gram LM also escalates. However,

this brings about challenges related to storage.

Prior to the emergence of Transformer-based
language models, RNN-based language models
were the prevalent choice for numerous tasks due
to their superior ability to model temporal informa-
tion. The vanilla RNN retains all previous sequence
context in the hidden state as follows:

H; = ¢ (X;Wy, +H, Wy, +bp) (1)

where X; = F; - wy € RIVIxd represents the word
embeddings, V is the vocabulary, and d is the di-
mension. However, as the length of a sequence
expands, the hidden state struggles to retain all his-
torical information, leading to gradient vanishing.

Motivated by human’s ability to selectively re-
member and forget information, GRU and LSTM
models were proposed, incorporating gate mech-
anisms. The computation of these gates is reliant
on the current input token and the previous hidden
state. To streamline notation, we use G; to denote
different gates as shown in the following equation:

Gt =0 (thx + Ht_1Wh + b) (2)

GRU has two gates: reset gate and update gate,
while LSTM includes forget gate, input gate, and
output gate. The update gate in GRU is applied
to the candidate hidden state. The final hidden
state further synchronizes the current input with
the preceding context, as depicted in the equation.

I:It = tanh (X; W, + (R © Hi—1) Wyy + by)

H =7Z,6H,_,+(1—-%Z)H,

3)
In LSTM, an extra memory unit, termed the
memory cell, is introduced alongside the hidden
states. The forget gate and input gate are directly
applied to these memory units. Furthermore, the
final hidden states are computed by multiplying
the output gate with the current memory cell, as

demonstrated in the subsequent equation:

Ct:FtQCt_1+It®Ct

“)
Ht = Ot ® tanh (Ct)

Finally, the output probability distribution is de-
rived from the hidden state computed by various
models:

y, = softmax (Hy) (5)

Overall, the gate mechanisms significantly enhance
the efficiency of RNN-based LMs, enabling the



model to selectively focus or forget, ensuring cru-
cial information is smoothly transmitted to subse-
quent sequences. In this study, we elucidate the
clear functions of these engineered operations by
correlating them with human behavioral data.

Large language models (LLMs) predominantly
rely on the Transformer architecture, composed of
Transformer blocks acting as layers denoted by
Il = 1,2..., L. Each Transformer block primarily
consists of a multi-head self-attention and a feed-
forward network. The motivation for the multi-
head self-attention mechanism lies in its ability to
extract various aspects of the sequence, with its ca-
pacity deepening with the increase of layers. Con-
currently, the FFN serves to output for the current
layers and makes prediction over a vocabulary.

More specifically, in layer [, the currently pro-
cessed representation is denoted by X f, and the
output for FFN is computed as:

ol = FFN! (Xf) 6)

An updated representation :i:é, is then achieved by
adding X f and oé. The updated representation, :Eé,
subsequently undergoes a self-attention process.
Given the presence of multi-head self-attention
in each layer, all the representations in each self-
attention head are concatenated to serve as the input
for the subsequent FFN layer, as illustrated below:

)

Xf“ = concatenate ( Attention’ (a?l)> (7)

In this work, we present empirical evidence sup-
porting the function of multi-head self-attention
and FFN layers by correlating their representa-
tions with human behavioral data. Intriguingly, we
provide substantiation of why FFN can be manip-
ulated and promote concepts and timing of such
manipulation as proposed in (Geva et al., 2022).

4 [Experiments

4.1 Correlation Metrics

We employ three prevalent correlation metrics:
Pearson (Freedman et al., 2007), Spearman (Caruso
and Cliff, 1997), and Kendall (Abdi, 2007), to in-
vestigate the relationship between values derived
from LMs and human behavioral measures. De-
spite minor differences, we find these correlation
metrics yield similar results. Among them, Spear-
man exhibits superior robustness when compared
to Pearson and Kendall. Interestingly, we discov-
ered that applying a 1og10@ transformation to the

raw values from LMs, considerably enhances the
robustness of the results. Unless stated otherwise,
experimental results are reported using Spearman
analysis without 1og1@ normalization.

4.2 Datasets

We employ WikiText-103 (Merity et al., 2016)
for training RNN LM, GRU LM, and LSTM LM.
The WikiText-103 is a tokenized corpus encom-
passing 28,475, 60, and 60 articles in the train-
ing, validation, and test sets respectively. To ad-
dress the sparsity issue encountered when train-
ing an N-Gram LM, we extract 4G data from the
original Wikipedia corpus!. For human behav-
ioral data, we utilize the ZuCo 2.0 dataset, which
comprises concurrent eye-tracking and electroen-
cephalograph records during natural reading (NR)
and task-specific reading (TSR). More precisely,
ZuCo 2.0 includes 730 English sentences, of which
349 are under a normal reading paradigm and 390
under a task-specific paradigm. These are coupled
with eye-tracking and EEG data recorded during
the NR and TSR process from 18 participants.

4.3 Language Model Implementations

In our experiments, we trained an N-Gram Lan-
guage Model using a Wikipedia corpus comprised
of 4GB, equivalent to 40 million sentences, with
the parameter N set to three. We observed that as
the data scale reaches 4GB, the precision of the
N-Gram model achieves stability.

Subsequently, we implemented two-layer RNN-
based Language Models using the WikiText-103
training set, based on the PyTorch open-source
project 2. The dimensions for both the embedding
and hidden state were set to 200. The initial learn-
ing rates were configured as 2.0 for the RNN and
20 for both GRU and LSTM, with weight decay.
The batch size was set at 20, gradient clipping at
0.25, and a dropout rate of 0.2.

For Large Language Models (LLMs), we em-
ployed a pre-trained GPT-2 model from Hugging-
face® to analyze the internal workings of the FEN
and multi-head self-attention. To present a com-
parative analysis of LLMs, we incorporated the
recently proposed pre-trained RWKV-V4 model #,

1https://dumps.wikimedia.org/wikidatawiki/

2https://github.com/pytorch/examples/tree/
main/word_language_model

3https://huggingface.co/gptz

*https://github.com/BlinkDL/RWKV-LM/tree/main/
RWKV-v4
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an RNN model delivering Transformer-level LLM
performance, specifically designed to model tem-
poral information.

4.4 Prediction Probability Correlation

In our experiment, we establish the correlation be-
tween the predicted word probability derived from
various LMs and five distinct eye-tracking mea-
sures, namely GD, TRT, FFD, SFD, and GPT, all
obtained from the ZuCo 2.0 dataset. The defini-
tions for these eye-tracking measures can be found
in Table 1. We consider these five measures collec-
tively for a comprehensive probe of LMs.

Eye-movement Abbrev. Definition

Measures

The sum of all fixations on the current word in the
first-pass reading before the eye moves out of the
word

The sum of all fixation durations on the current
word, including regressions

The duration of the first fixation on the prevailing

Gaze duration GD

Total reading time TRT

First fixation dura- FFD

tion word

Single fixation du- SFD The duration of the first and only fixation on the
ration current word

Go-past time GPT The sum of all fixations prior to progressing to

the right of the current word, including regressions
to previous words that originated from the current
word

Table 1: Definition for Eye-tracking Measures

The TSR task consists of 5335 words for predic-
tion, while the NR task contains 5329 words. Table
2 illustrates our results: the upper presents the cor-
relation outcomes in the TSR task, and the lower
does the same for the NR task. In general, all LMs,
except GPT-2, demonstrate noticeable and robust
negative correlations in both the TSR and NR tasks.
This can be interpreted as a higher reading time
for humans correlating with increased prediction
difficulty for the LMs. The correlation in NR tasks
outperforms that in TSR tasks, potentially due to
the LMs’ training being more akin to the NR task
structure.

Model Eye-tracking Measures

GD TRT FFD SFD GPT
Task-specific Reading
N-Gram —0.26 —0.25 —0.23 —0.15 —0.23
RNN —0.44 —0.43 —0.41 —0.28 —0.40
GRU -0.46 -0.45 -0.43 -0.30 -0.43
LSTM —0.42 —0.41 —0.39 —0.26 —0.39
RWKV —0.39 —0.40 —0.40 —0.27 -0.33
GPT-2 0.23 0.21 0.20 0.12 0.28
Natural Reading

N-Gram —0.33 —0.33 —0.31 —0.15 —0.29
RNN —0.52 —0.51 —0.50 —0.26 —0.46
GRU -0.54 -0.53 -0.52 -0.29 -0.48
LSTM —0.52 —0.50 —0.49 —0.26 —0.46
RWKV —0.39 —0.39 —0.38 —0.19 —0.28
GPT-2 0.33 0.30 0.30 0.14 0.37

Table 2: Prediction Probability Correlation Results us-
ing Spearman (Significant at p < 0.05)

Specifically, the N-Gram model shows correla-
tion with human behavioral data, likely due to its
shared frequency-based feature with human linguis-
tic knowledge. Notably, RNN-based LMs exhibit
an exceptional correlation of over 0.5 with human
behavioral data, suggesting a significant similar-
ity with human patterns. The GRU model delivers
superior results compared to RNN and LSTM.

Interestingly, RWKYV LLM indicates negative
correlations while GPT-2 shows positive. Given
the powerful capabilities of GPT-2, we observe an
increase in the probability of hard-predicted words
compared to other LMs. This discrepancy might
arise from LLMs confidently predicting words that
humans take longer to process, indicating the di-
verse prediction capacity of LLMs, where the prob-
ability of easy-to-predict words decreases, while
that of hard-to-predict words increases.

4.5 Probing Gate Mechanism

We then probe the functions of memory units - hid-
den states and memory cells, as well as the gate
mechanism in GRU and LSTM. As depicted in Ta-
ble 3, the first layer’s hidden states of RNN exhibit
a robust positive correlation with human behavioral
data, while the second layer does not show signif-
icant correlation patterns. It appears that the first
layer’s hidden states in the RNN process raw lin-
guistic information of sequences that directly map
onto human behavioral patterns in both TSR and
NR tasks. On the other hand, the deeper hidden
states of RNN are engaged in comprehension in
the TSR task, requiring more reasoning ability. The
correlation results for the RNN'’s deeper layer re-
main positive in NR, illustrating further syntactic
processing and comprehension abilities.

Eye-tracking Measures

RNN Model

GD TRT FFD SFD GPT

Task-specific Reading
H-L1 0.53 0.51 0.51 0.41 0.49
H-L2 —0.09 —0.11 —0.09 —0.04 —0.04
Natural Reading

H-L1 0.56 0.54 0.55 0.35 0.52
H-L2 0.42 0.41 0.4 0.23 0.41

Table 3: RNN Hidden State from Different Layers Cor-
relation Results (Significant at p < 0.05)

In both GRU and LSTM models shown in Ta-
bles 4 and 5, we observed no discernible correlation
between hidden states, memory cells, and human
behavioral data. However, the gate mechanisms
exhibited a strong correlation, leading us to find



that in GRU and LSTM, memory units primarily
respond to comprehension synthesizing, while the
gates handle contextual processing and informa-
tion flow.

Eye-tracking Measures

GRU Model

GD TRT FFD SFD GPT

Task-specific Reading
H-L1 0.07 0.06 0.05 0.03 0.15
H-L2 —0.02 —0.01 —0.01 0.00 —0.11
Reset Gate —0.43 —0.42 —0.41 —0.32 —0.41
Update Gate —0.46 —0.45 —0.45 —0.34 —0.43
Candidate Hidden State —0.47 —0.45 —0.44 —0.33 —0.46
Natural Reading

H-L1 0.15 0.14 0.15 0.08 0.24
H-L2 —0.09 —0.09 —0.09 —0.04 —0.20
Reset Gate —0.44 —0.42 —0.42 —0.25 —0.41
Update Gate —0.48 —0.46 —0.46 —0.27 —0.43
Candidate Hidden State —0.56 —0.54 —0.54 —0.33 —0.53

Table 4: GRU States from Different Layers Correlation
Results (Significant at p < 0.05)

Eye-tracking Measures

LSTM Model

GD TRT FFD SFD GPT

Task-specific Reading
H-LI 0.01 0.0 0.0 0.0 0.12
H-L2 0.01 0.0 —0.01 —0.01 0.1
C-L1 —-0.18 —-0.23 -0.2 —0.09 —0.04
C-L2 —0.01 —0.01 —0.01 —0.01 —0.09
Input Gate —0.48 —0.46 —0.46 —0.37 —0.45
Forget Gate 0.29 0.28 0.28 0.24 0.31
Candidate Cell State —0.38 —0.36 —0.35 —0.26 —0.39
Output Gate 0.46 0.46 0.44 0.34 0.43
Natural Reading

H-LI 0.08 0.06 0.08 0.05 0.2
H-L2 0.08 0.08 0.08 0.02 0.19
C-L1 —0.01 —0.09 —0.01 0.1 0.13
C-L2 —0.04 —0.03 —0.04 0.0 —0.14
Input Gate —0.5 —0.48 —0.48 —0.31 —0.45
Forget Gate 0.31 0.29 0.3 0.2 0.32
Candidate Cell State 0.45 0.43 0.43 0.24 0.45
Output Gate 0.52 0.51 0.51 0.32 0.47

Table 5: LSTM States from Different Layers Correlation
Results (Significant at p < 0.05)

In the case of both TSR and NR tasks within
the GRU model, the reset gate, update gate, and
candidate hidden states all exhibited negative cor-
relation results. This indicates that the more time
human readers spent on current words, the smaller
the gate values and the other way around. In the
LSTM model, the input gate demonstrated a neg-
ative correlation, while both the forget gate and
output gate showed positive correlations. An inter-
esting anomaly observed was the reverse correla-
tion of the candidate cell state in LSTM between
TSR and NR tasks, which warrants further investi-
gation.

In conclusion, our analysis underscores the im-
portance of the gate mechanism in handling con-
textual processing and information flow in GRU
and LSTM. The functionalities of the gates can
be viewed as promotion and elimination of tokens.
Certain gates promote tokens, whereas others are

tasked with eliminating them.

4.6 FFN and Multi-head Self-attention

Finally, we scrutinize the roles of FFN and multi-
head self-attention. As delineated in Figure 1, we
establish a correlation between FFN output at each
layer and the corresponding human behavioral data.
It was noted that the embedding of input tokens
displayed a direct correlation with human reading
times. With escalating layers, the correlation coef-
ficients initially rise, only to witness a minor dip
later. This suggests that the proficiency in pro-
cessing syntactic and semantic elements gradually
amplifies until the pinnacle at layer 8. Post layer
8, the FFN primarily concentrates on enhancing
comprehension skills. Each output of FFN exhibits
potential in predicting words over a vocabulary,
thereby supplying empirical substantiation for the
work (Geva et al., 2022), where FFN is used to
promote tokens. Moreover, FFN output succeed-
ing layer 8 appears more apt for word generation,
while the concluding layers seem well-suited for
tasks involving reasoning and comprehension.

GPT-2 States Correlated with Eye-tracking Features
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Figure 1: FFN through Layers in GPT-2 Correlated with
Eye-tracking Features (Significant at p < 0.05)

Figure 2 offers heatmaps delineating the correla-
tion between 12 self-attention heads values across
12 distinct layers and the human behavioral data;
lighter and larger values indicate stronger corre-
lations. Initially, multi-head self-attention was
devised to model disparate facets of the input se-
quence. Intriguingly, we observe that the functions
are allocated across varying attention heads. As
the layers amplify, the correlation coefficients show
an organic augmentation, corroborating our find-
ings in the probe of FFN layers. Of note, a minority
of attention heads in higher layers display smaller
values. This could be attributed to the subjective
bias inherent in eye-tracking experiments. The



Zuco 2.0 dataset is a moderately-sized compilation
involving 18 participants. Increasing the partici-
pant pool could potentially alleviate the impact of
individual biases.

5 Conclusion

Understanding the process of word prediction and
the internal workings of LLMs is crucial for ex-
plainability and for further strengthening powerful-
ness and eliminating the hardness of LLMs. Our
study probes LLMs from a human behavior per-
spective using eye-tracking measures. We found
that RNN-based models had the most similar pat-
tern as humans for word prediction, unlike LL.Ms.
Further, we discovered that in RNN-based LMs,
hidden states and memory cells serve as compre-
hensive units, with gates directing information flow.
Some gates are prompting information, while oth-
ers are eliminating. Analysis of FFN and self-
attention reveals that FFN directly maps to the pre-
diction with a peak and then enhances comprehen-
sion. The functions of self-attention are distributed
across multiple heads.

Limitations

Our work primarily concentrates on probing Large
Language Models (LLMs) using human behavioral
data. During the interpretation of the multi-head
self-attention mechanism, we encountered individ-
ual bias. Future research could harness a larger
volume of eye-tracking data to counteract this bias.
Additionally, including EEG data could allow us to
probe LLMs from a brain activation standpoint.

In terms of LLMs, we selected RWKYV and GPT-
2 as our baselines for understanding. RWKYV, a
recently proposed RNN-style model, warrants fur-
ther exploration to comprehend the internal mecha-
nisms that enable it to achieve performance com-
parable to the GPT model. Additionally, with the
release of the LLaMA model, which boasts an even
larger parameter set, future work could leverage
the LLaMA model to elucidate the emergent phe-
nomena of LLLMs using human behavioral data.

Lastly, we employed various eye-tracking mea-
sures collectively to probe LLMs. In future endeav-
ors, we aim to examine these measures individually
to better leverage the definition of each measure,
thereby enhancing our understanding of the reason-
ing line.

(e) Attention Heads Correlated Results (GPT)

Figure 2: Attention Heads through Layers Correlated
Results (Significant at p < 0.05)
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